Can intraspecific competition drive disruptive selection? An experimental test in natural populations of sticklebacks.
نویسنده
چکیده
Theory suggests that frequency-dependent resource competition will disproportionately impact the most common phenotypes in a population. The resulting disruptive selection forms the driving force behind evolutionary models of niche diversification, character release, ecological sexual dimorphism, resource polymorphism, and sympatric speciation. However, there is little empirical support for the idea that intraspecific competition generates disruptive selection. This paper presents a test of this theory, using natural populations of the three-spine stickleback, Gasterosteus aculeatus. Sticklebacks exhibit substantial individual specialization associated with phenotypic variation and so are likely to experience frequency-dependent competition and hence disruptive selection. Using body size and relative gonad mass as indirect measures of potential fecundity and hence fitness, I show that an important aspect of trophic morphology, gill raker length, is subject to disruptive selection in one of two natural lake populations. To test whether this apparent disruptive selection could have been caused by competition, I manipulated population densities in pairs of large enclosures in each of five lakes. In each lake I removed fish from one enclosure and added them to the other to create paired low- and high-population-density treatments with natural phenotype distributions. Again using indirect measures of fitness, disruptive selection was consistently stronger in high-density than low-density enclosures. These results support long-standing theoretical arguments that intraspecific competition drives disruptive selection and thus may be an important causal agent in the evolution of ecological variation.
منابع مشابه
Sexual dimorphism and speciation on two ecological coins: patterns from nature and theoretical predictions.
Adaptive divergence of phenotypes, such as sexual dimorphism or adaptive speciation, can result from disruptive selection via competition for limited resources. Theory indicates that speciation and sexual dimorphism can result from identical ecological conditions, but co-occurrence is unlikely because whichever evolves first should dissipate the disruptive selection necessary to drive evolution...
متن کاملIntraspecific competition drives increased resource use diversity within a natural population.
Resource competition is thought to play a major role in driving evolutionary diversification. For instance, in ecological character displacement, coexisting species evolve to use different resources, reducing the effects of interspecific competition. It is thought that a similar diversifying effect might occur in response to competition among members of a single species. Individuals may mitigat...
متن کاملThe shape of the competition and carrying capacity kernels affects the likelihood of disruptive selection.
Many quantitative genetic and adaptive dynamic models suggest that disruptive selection can maintain genetic polymorphism and be the driving force causing evolutionary divergence. These models also suggest that disruptive selection arises from frequency-dependent intraspecific competition. For convenience or historical precedence, these models assume that carrying capacity and competition funct...
متن کاملField and experimental evidence for competition's role in phenotypic divergence.
Resource competition has long been viewed as a major cause of phenotypic divergence within and between species. Theory predicts that divergence arises because natural selection favors individuals that are phenotypically dissimilar from their competitors. Yet, there are few conclusive tests of this key prediction. Drawing on data from both natural populations and a controlled experiment, this pa...
متن کاملMaintenance of a Genetic Polymorphism with Disruptive Natural Selection in Stickleback
The role of natural selection in the maintenance of genetic variation in wild populations remains a major problem in evolution. The influence of disruptive natural selection on genetic variation is especially interesting because it might lead to the evolution of assortative mating or dominance [1, 2]. In theory, variation can persist at a gene under disruptive natural selection, but the process...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 58 3 شماره
صفحات -
تاریخ انتشار 2004